Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Xi Sun

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: yuxisun@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.061$
$w R$ factor $=0.141$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-(3,4-Dihydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

The title Schiff base compound, $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$, was synthesized by the reaction of 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one and 3,4-dihydroxybenzaldehyde in methanol solution. As expected, the compound adopts a trans configuration about the central $\mathrm{C}=\mathrm{N}$ bond. In the crystal structure, adjacent molecules are linked through a pair of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions.

Comment

The background to this study s described in the first paper of this series (Sun, 2006). As an extension of our work (Sun, Xie et al., 2006; Sun, Zhang, Jin et al., 2006; Sun, Zhang, Wang et al., 2006) on the structural characterization of antipyrine derivatives, a new Shiff base compound, (I), is reported here.

(I)

The molecular structure is shown in Fig.1. All the bond distances and angles are in normal ranges, close to those observed in similar antipyrine Schiff bases. Atom O1 deviates from the pyrazoline mean plane by 0.109 (2) \AA, whereas atom C 10 and C 11 deviate from it, on the opposite side, by 0.112 (2) and 0.399 (2) Å, respectively. The $\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-$ $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ torsion angles are -137.7 (2) and $-97.5(3)^{\circ}$, the pyrazoline ring and $\mathrm{C} 1-\mathrm{C} 6$ benzene ring planes are noncoplanar, the dihedral angle between them being 65.2 (3) ${ }^{\circ}$. The $\mathrm{C} 12=\mathrm{N} 3$ bond length of 1.281 (3) \AA conforms to the value for a double bond. As a result of conjugation through the imino double bond, the pyrazoline and $\mathrm{C} 13-\mathrm{C} 18$ benzene rings are nearly coplanar [mean deviation from the overall combined mean plane is $0.090(3) \AA$]; the dihedral angle between the pyrazoline ring and the $\mathrm{C} 13-\mathrm{C} 18$ benzene ring is $11.2(3)^{\circ}$. As expected, the molecular structure of the Schiff base adopts a trans configuration about the central $\mathrm{C} 12=\mathrm{N} 3$ bond as do the other similar antipyrine derivatives that have been reported.

In the crystal structure, intramolecular hydrogen bonds exist between adjacent hydroxybenzene hydroxy groups and
intermolecular hydrogen bonds exist between adjacent molecules. The molecules stack along the a axis with no other short contacts apart from those described above (Table 1 and Fig. 2).

Experimental

All the chemicals were obtained from commercial sources and were used without purification. 4-Amino-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one ($0.2 \mathrm{mmol}, 40.6 \mathrm{mg}$) and an equimolar quantity of 3,4-dihydroxybenzaldehyde ($0.2 \mathrm{mmol}, 27.6 \mathrm{mg}$) were dissolved in methanol (20 ml). The mixture was stirred for 30 min at room temperature to give a clear-yellow solution. This was kept in air for 10 d after which time yellow plate-shaped crystals of (I) were formed at the bottom of the vessel on slow evaporation of the methanol (yield 95.5%). Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 66.86, H $5.30, \mathrm{~N}$ 13.00%; found: C 66.81, H 5.31, N 12.96%.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=323.35$
Orthorhombic, $P b c a$
$a=6.8520(5) \AA$
$b=16.8891(13) \AA$
$c=27.204(2) \AA$
$V=3148.1(4) \AA^{3}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.985, T_{\text {max }}=0.999$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.141$
$S=1.03$
3265 reflections
221 parameters
H -atom parameters constrained

$Z=8$

$D_{x}=1.364 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Thin plate, yellow
$0.16 \times 0.14 \times 0.01 \mathrm{~mm}$

23501 measured reflections
3265 independent reflections
2014 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=26.5^{\circ}$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0454 P)^{2}\right.} \\
&+1.5021 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is shown as a dashed line.

Figure 2
The packing of (I), viewed down the a axis. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.
refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

The work was supported by the National Natural Science Foundation of China (grant Nos. 30270245 and 30470247) and Qufu Normal University for Science and Technology.

References

Bruker (2002). SMART (Version 5.628), SAINT-Plus (Version 6.22) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, Y.-X.. (2006). Acta Cryst. E62, o5845-o5847.
Sun, Y.-X., Xie, X.-H., Zhang, R., Zhang, L.-F. \& Xu, L.-X. (2006). Acta Cryst. E62, o4758-04760.
Sun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. \& Lü, X.-M. (2006). Acta Cryst. C62, o467-o469.
Sun, Y.-X., Zhang, R., Wang, B.-L., Ding, D.-J. \& Liu, S. (2006). Acta Cryst. E62, o4613-o4615.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

